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Domainlike temperature distributions (solitary structures) are studied, which may arise in the half
space with the surface heated by the external heat flux depending in a nonlinear way on the local surface
temperature. Solutions describing stationary axisymmetric structures for some model dependencies of
the external heat flux density on the surface temperature are found analytically or numerically. The sta-
bility of stationary axisymmetric structures is analyzed. When applied to an analysis of spots on elec-
trodes in arc discharges, for given characteristics of the near-electrode plasma layer such an approach
results in the complete description of the stationary spots on smooth surfaces, including the spot radius
and the integral current. An evaluation for cathode spots in vacuum arcs is given; the results are inside

the usual range of characteristics of macrospots.

PACS number(s): 52.80.Mg, 52.80.Vp, 44.10.+1i

I. INTRODUCTION

We consider the problem of heat conduction in the half
space heated from outside, the density g of the incoming
heat flux being a nonlinear function of the local value of
the surface temperature. At large distances from the ori-
gin of coordinates the temperature distribution is uni-
form: T =T, where T, is a given constant (obviously,
this implies that the value of g, corresponding to T, is
zero).

The solution of the considered problem is in a general
case nonunique. There is the trivial solution T=T_ cor-
responding to the situation when the temperature in the
whole half space is unperturbed, and nontrivial solutions
describing localized temperature perturbations (solitary
structures). The length scale of these structures is of or-
der of kT /q, where k is the thermal conductivity of the
material. Just these structures are studied in the present
paper.

This problem is of substantial theoretical interest as
one of the simplest models giving rise to solitary dissipa-
tive structures. In addition, it is of interest due to its re-
lation to spots on the electrodes in arc discharges. Con-
sider for definiteness the cathode spots of vacuum arcs.
It is well known (e.g., [1]) that the thickness of the near-
cathode plasma layer in which the flux of ions to the
cathode is formed and which gives the main contribution
to the total near-cathode voltage drop is considerably less
than the radius of the spots. Hence, the current transfer
across this layer is locally one dimensional and for the
given voltage drop in the layer the density of the heat flux
from the plasma to the cathode surface may be con-
sidered as a function of the local surface temperature.
Thus, one arrives at the above-described statement of the
problem, the structure being nothing else than the
cathode spot.

An important specific feature that distinguishes the
spots from other possible nonlinear heat structures is
their channel-like character. The electric current and,
correspondingly, the heat flux coming to the electrode
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surface from the plasma are localized in an area with a
more or less distinct boundary (in the current spot). In
the simplest—axially symmetric—case this is a circle of
a certain radius. This feature is well known [2] and re-
sults from the fact that some of the processes involved
are of the Arrhenius type with a high activation energy,
such as electron emission, ionization of neutral particles,
and evaporation. A correct account of this feature is im-
portant for any theory of the spots.

In view of the above, we may conclude that a proper
way of constructing the theory of the electrode arc spots
is to consider the spot as a nonlinear heat structure with
account for the Arrhenius nature of the processes in-
volved. A very large number of papers has been pub-
lished on various aspects of the theory of cathode spots of
vacuum arcs; see, e.g., [1-6] and references therein.
However, there is no theory that can without using
empirical parameters (such as the value of the integral
current to the spot) or arbitrary suppositions (such as
some or other implementation of the “principle” of
minimum voltage) predict the radius of the spot on a
smooth surface. In contrast to this, the above-described
approach provides for given characteristics of the near-
electrode plasma layer the complete description of the
spot. When the above-described problem is solved, the
temperature distribution in the cathode bulk and on the
surface, the current density distribution in the spot, the
radius of the spot, the integral current to the spot, the in-
tegral power dissipated in the spot, etc., corresponding to
the considered value of the voltage drop in the near-
electrode layer, will be determined. By solving the prob-
lem for different values of the voltage drop, one can cal-
culate the current-voltage characteristic of the spot.
Close to such an approach we mention investigations
[7,8] in which the idea of treating the spot as a nonlinear
heat structure had been put forward. Unfortunately the
way to combine it with the idea of a channel-like spot has
not been found; in fact, in [8] consideration of the spot as
a nonlinear structure was replaced by the channel-like
model with constant parameters within the current spot,
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the spot radius being determined from the certain im-
plementation of the minimum principle.

The formulation of the problem is considered in Sec.
I1. Stationary axisymmetric structures are treated in Sec.
III. Stability of these structures is analyzed in Sec. IV.
Finally, in Sec. V, among other concluding remarks, the
application to cathode spots in vacuum arcs is given.

II. GOVERNING EQUATION
AND BOUNDARY CONDITIONS

Consider the half space (electrode bulk) with the sur-
face heated by the energy flux from the adjacent medium
(plasma); see Fig. 1. We denote by ¢ the density of the
heat flux from the surface into the bulk; for example, if
the theory refers to the cathode spots of a vacuum arc, g
may be taken equal to the density of the energy influx
caused by ion impact and neutralization minus losses
caused by electron emission cooling and evaporation
cooling. g will be treated as a prescribed nonlinear func-
tion of the local surface temperature and of a control pa-
rameter U (the near-electrode voltage drop which is as-
sumed constant along the surface): ¢ =¢(7,U). It is sup-
posed that g tends to zero faster than (T— T, )% as T de-
creases down to the unperturbed temperature T, which
implies that the derivative dqg /0T in some range of the
temperature values is positive. Note that from the point
of view of the conventional heat-exchange theory the
latter is not quite usual: In heat-exchange problems
without the electric current increase of the surface tem-
perature results in decrease of the external heat flux to
this surface, i.e., dq /dT is negative.

As the thermal conductivity « of the bulk material is in
a general case variable (it depends on the temperature), it
is convenient to introduce in place of T the new variable

(9]
D= [ «(TdT . ()

In cases when it cannot cause confusion ¥ will be for
brevity referred to as the temperature.

Neglecting ohmic heating in the bulk, we have [the cy-
lindrical coordinates (r,@,z) are introduced as shown in
Fig. 1]
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FIG. 1. Geometry of the problem.
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Here ¢ designates time and Y is the thermal diffusivity of
the material (the thermal conductivity divided by the
density and by the specific heat).

III. STATIONARY AXISYMMETRIC SOLUTIONS

The problem governing the stationary axisymmetric
solution ¥=1'"(r,z) is obtained from Egs. (2) and (3) by
dropping in Eq. (2) the term on the left-hand side and the
second term on the right-hand side. For some purposes
(for example, for the numerical solution [7]) it is con-
venient to employ also an (equivalent) statement of the
problem in terms of an integral equation. To derive this
equation, we represent the solution as the integral trans-
form [9]

¢‘”(r,z)=f0°° A(K)Jo(kre *dk | 4)

where J, is the zero-order Bessel function of the first
kind, and A(k) is a function to be specified.
Differentiating (4) with respect to z, setting z =0, and in-
verting the obtained relationship, one finds

A= [ 7 q(O(&), UNo(kOEE . (5)

Here ®=06(r)=v'"(r,0).

Substituting (5) in (4), setting z =0, changing order of
integration, and expressing with the help of [10] the in-
tegral of the product Jy(k&)J,(kr) in terms of the com-
plete elliptic integral of the first kind K =K (m) [11], one
obtains the desired integral equation for the distribution
of the surface temperature @(r)

—2rr g
O(=—"-[q(0(£), U)K [ - ‘dg

2 © r
+= [T q(0©), UK | 7 |dE . (6)

Due to the properties of the function K (m) [11], this
equation may be written also in the form

4r&
(r+£)?

£ g

e dg . )]

_2 e
O== [ “q(0(&),U)

Note that K(0)=m/2, so Eq. (7) for large r in the first ap-
proximation assumes the form

on=-2, (®)
2mr
where Q is the integral heat flux removed by heat conduc-
tion,

Q=27 [ " q(O(£),U)EdE . ©)

The physical sense of Eq. (8) is quite clear: At large
distances from the structure the temperature distribution
in the first approximation coincides with that created by
a point heat source with the intensity Q. According to
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the supposition mentioned in Sec. II concerning the func-
tion ¢, g(®(&),U) decreases for £— o faster than £ 2,
and the above integrals are convergent.

The considered problem has a nonunique solution.
There is the trivial solution ® =0 corresponding to the
situation when the structure is absent and the tempera-
ture field is unperturbed, and a nontrivial solution which
we are interested in. The general question of what are
the conditions satisfied by the function g for a nontrivial
solution to exist, and of uniqueness of this solution, is
beyond the scope of the present paper. Instead, solutions
are studied below for three particular cases.

The most convincing example of the existence of a non-
trivial solution is that in which an exact solution is found
analytically. Therefore, we first consider the case when
the dependence of the heat flux density on the tempera-
ture is described by the step function

g, for ¥>9,
q(p,U)= 0 for <, . (10)

Here and further ¢, and 3, designate some prescribed
quantities which are independent of 1 but may depend on
U.

Substituting (10) in (6) and evaluating integrals with
the help of [10] under the supposition that the equation
®(r)=1, has only one root, one obtains the solution that
may be written as follows:

E(p?) for p=<1
1

p——
p

alp)= 11

pE —12— K forp=1.

o

Here and further a=® /vy, and p=2rq, /7, are the
normalized temperature of the surface and the normal-
ized distance from the center of the structure, E=E(m)
is the complete elliptic integral of the second kind [11].

The local heat flux density equals to g, for p <1 and to
zero for p > 1, so heat production is localized in the circle
(current spot) of the radius 7, /2q,. The temperature
decreases monotonically, inside the circle from the value
®(0)=(w/2)¢, to the “switching” temperature ., and
outside the circle from ¢, to zero. The integral heat flux
Q to the surface is 72 /4q, .

A graph of the function a(p) described by Eq. (11) is
shown in Fig. 2 by the solid line. The dashed line
represents the main term of the asymptotic expansion of
a(p) for p— o, which equals to 7/4p.

The above solution is unique in the class of functions
such that the equation ®(r)=1, has one root, i.e., in the
class of solutions describing a circular current spot. One
could think also of solutions with two roots (describing a
ring spot), three roots (a circular spot and a ring spot
concentric with it), etc. However, it is not evident that
such solutions exist. Leaving this question beyond the
scope of the present paper, we mention only that the
solution with two roots does not exist, which can be easi-
ly proven.

For the case when the dependence of the heat flux den-
sity on the temperature may be approximated by the
Arrhenius-type function

1.5 4

1.0 4
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0.0 T T T 1
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FIG. 2. Distribution of the normalized surface temperature
for the step-function model (10).

q(Y,U)=gq  exp(—9,/¥), (12)

Eq. (7) has been solved numerically. A usual technique of
solving nonlinear integral equations [12,13] that includes
linearization of the right-hand side by means of the
Newton’s method was employed; note that straightfor-
ward iterations which are suggested by the form of Eq.
(7) proved to be unstable. The convergence of iterations
turned out to be insensitive to the choice of the initial ap-
proximation; the obtained solution is shown in Fig. 3 by
the solid lines (here and further g, =q /q, ).

Again, a(p) decreases monotonically. In contrast to
the preceding case, the current spot does not have a dis-
tinct boundary. a(0)=0.5638, i.e., is of order unity; in
other words, the temperature 1/1‘”(0,0) in the center
of the spot is of the order of the activation temperature
¥,. The value of the normalized integral heat flux
Q /(w2 /2q, ) is 0.4746. The main term of the asymp-
totic expansion of a(p) for p— o, calculated by means of
(8) using this value, is shown in Fig. 3 by the dashed line.

Consider now the case when the heat flux density is
nonzero only in a narrow range of the surface tempera-
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FIG. 3. Distributions of the normalized surface temperature
and of the normalized heat flux for the Arrhenius model (12).
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tures:

q(¢,U)=q,q, (13)

¢'_¢*
ey ’

where € is a prescribed small parameter and g, is a
prescribed function which tends to zero fast enough for
large positive or negative values of the argument. (Note
that one could consider a little simpler expresson ob-
tained by replacing 1 in the denominator of the argument
of g, by v,, but this expression would not satisfy for
finite € the condition of vanishing at ¥=0.) For
definiteness, it will be supposed that g, monotonically
grows for negative values of the argument and monotoni-
cally decreases for positive values, g,(0) being equal to
unity. The simple example of such a function is

-1
B—1
B > (14)

qu =

cosh

where B=v/¢,.

To find the general appearance of the solution for
such-type functions, the problem has been solved numeri-
cally for the function (14). The solutions obtained for
€=0.1, 0.05 are shown in Fig. 4 by the solid lines. The
surface temperature decreases monotonically, as in both
preceding cases. Similar to the case of the step function
and in contrast to the Arrhenius case, the boundary of
the current spot is well pronounced. The surface temper-
ature in the spot varies only slightly and is a little higher
than 1., which seems quite understandable: If the tem-
perature inside the spot exceeded v, appreciably, the lo-
cal heat flux would be zero and such a temperature could
not be maintained.

To describe the main features of the solution analyti-
cally, the technique of the matched asymptotic expan-
sions in the small parameter € may be employed. The
straightforward asymptotic expansion is

Bzﬁx(P1,ﬂ1)+ T, (15)

0.50

0.25

0.00

FIG. 4. Distributions of the normalized surface temperature
a (lines 1,2) and of the normalized heat flux g, (3,4) for the mod-
el (14). 1,3: €=0.1;2,4: €=0.05.

where py=p/p., Mm=n/p., 1=229, /7Y, p, being an
unknown parameter (the normalized radius of the spot).
The function B, satisfies the Laplace equation, is equal to
unity on the surface in the unit circle p; <1, satisfies the
homogeneous Neumann condition on the surface outside
this circle, and vanishes at infinity. This function coin-
cides with the distribution of the electrostatic potential,
created in vacuum by a biased disk, and may be written
as (e.g., [9,14])

2
[(pr— D2+ i1 2+ [(p+ 1> +0i]' 2

(16)

_2 .
;= —arcsin
T

The distribution of the normalized heat flux density in-
side the spot, derived from (16), is

4 1
= —_— . (17)
9u ’ITZp* (l—p%)l/z
The corresponding integral heat flux is
2mp 2
o= TP+ Y% . (18)
9«

In principle, (17) allows one to find the variation of the
surface temperature inside the spot [or, in other words, to
evaluate the second term of the expansion (15) inside the
unit circle on the surface]. This variation should corre-
spond to the heat flux distribution (17). ’

Distribution (17) and the surface temperature outside
the spot, described by (16), both calculated using the
value of p, from the numerical solution, are shown in
Fig. 4 by the dashed lines. Agreement with the exact re-
sults is reasonable. The difference between the value (18)
and the exact value of Q also is reasonably small: 11%
for €e=0.1 and 7% for €=0.05.

Expansion (15) should be applicable in the whole half
space 17, =0 with the exception of the vicinity of the ring
p1=1 in the plane n;=0. It follows, in particular, that
the heat flux density described by (17) should not exceed
1 for any fixed p; < 1. Hence, the order of p, exceeds uni-
ty. To obtain a more definite estimate, the above-
mentioned vicinity, i.e., the transition region between the
spot and the surrounding current-free area, should be
considered.

Supposing that the variation of the temperature in this
vicinity is of order ey, while the heat flux density is of
order q,, one finds that the local length scale is €y, /q,.
Accordingly, the corresponding two-term asymptotic ex-
pansion is

B=1+eBy(ppmy)+ -+ , (19)

where p,=(p—p,)/€ and n,=n/c. B, is governed by the
problem

3B, 9B
= 2=o0, (20)
9p3 an;
B, _
Sg— > q,(B5), m,=0, (21)
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— @
B2=—Cl/p300573+"- , Py . (22)

Here C=(8/m%€p,)'?, p; and @, are the polar coordi-
nates in the plane (p,,7,): p,=p;cos@;, 17,=p;sing;.
Boundary condition (22) is derived from matching of the
first and the second terms of the expansion (19) with the
first term of the outer expansion (15).

Note that the first item on the right-hand side of (22)
vanishes at ¢;=7. Hence, the order of magnitude of 8,
in the limit p,— — o, 7, fixed is smaller than 1/ —p,.
To find asymptotic behavior in this limit, the second term
of the outer expansion should be included in matching.
It follows from (17) that 3, tends to plus infinity in such a
way that

q,(By)=——F—=+ """ . (23)
’ Tr\/ P2

It is expected that the constant C cannot be chosen ar-
bitrarily; this is similar to the case of the constant Q,
which governs asymptotic behavior of the function ®(r)
for large r [Eq. (8)] and which also cannot be chosen arbi-
trarily but rather is to be determined as a part of the solu-
tion of the problem. Hence, C in (22) and (23) should be
replaced by O(1), and when the resulting problem is
solved and B, is found, one will be able to determine C.
Py also can be determined, so the asymptotic solution of
the problem on the whole will be complete. Evidently,
P =0(1/¢€).

The value of C should be determined separately for
each function ¢g,. For example, for the function (14) this
value, if estimated in terms of p, taken from the numeri-
cal solution shown in Fig. 4, is approximately 3.

The contribution of the considered transition region to
the integral heat flux to the surface is of the order of
1/13, /q,. This is asymptotically small as compared to the
contribution of the inner part of the spot, governed by
Eq. (18), which is of the order of ¥ /eq,. Hence, the in-
tegral heat flux in the first approximation is determined
by the inner part of the spot and may be evaluated by
means of Eq. (18).

IV. STABILITY OF STATIONARY
AXISYMMETRIC SOLUTIONS

We assume for simplicity Yy =const and represent per-
turbations as 1/;(2)(r,z)e ATHine where 1= Xt is normalized
time and =0, +1,+ . The amplitude #'?’ and the
increment A are the eigenfunction and the eigenvalue of
the linear problem

_31’_ _,'1’_ jiz_ (2) —
r ar ar 9z2 At r? ¥ 0, 24)
oy? (n @
. = ¢ [1,0 LU z=0, (25)
P50, r+z—o . (26)

It follows trivially that

)\fow fow |¢(2)|2rdrdz

— fow ‘¢(2)

(r,O)lz—é%((D(r),U)rdr

o o 9 (2) 2
_fo fo oz
2
(2)]2
+1;L—2|1/1 |2 |rdrdz . 27

Evidently, A is real; positive values of A are not exclud-
ed since the first term on the right-hand side of (27) may
be positive (note once again that we consider the situation
when, in contrast to the conditions of the conventional
heat exchange, the derivative dq /9y in some temperature
range is positive).

Equations (24)-(26) may be reduced to the eigenvalue
problem for the homogeneous Fredholm equation of the
second kind for the function o= ¢ (r,0) describing the
perturbation of the surface temperature

o(r)=[ " &) ¢(®(§ JUIWEdE (28)
where
-k
w=w&riv=[ Tk krdk
(29)

Here a =0 for A>0and a =V —A for A <0, v=|pu|.
Note that

W VT 1
W& r;0,v)=(—1) Tv+1/2) |r2— 172
2+ 2
X PV (30)
12 12 g ]
_ _L
0,0, (31)
wigr;0,0,)= +§ (r+£)?

Here I is the gamma function, PY, /, is the accoatiated
Legendre function of the first kind [11].

Leaving the full treatment of Eq. (28) beyond the scope
of this paper, we present some considerations on stability
against the zeroth and first harmonics v=0 and v=1 sup-
posing that for each harmonic the biggest eigenvalue A
corresponds to the eigenfunction w which does not vanish
in the open interval (0, ). We mention in this connec-
tion the investigation of the stability of cylindrical
current filaments in semiconductors [15].

For v=1, Eq. (28) is satisfied by

do®
o= ar (32)
which is verified explicitly in the Appendix. This is the
Goldstone mode [15], corresponding to a quasistationary
infinitesimal translation of the structure in the direction
@=0. It is expected that the surface temperature distri-
bution is monotonic, so d ® /dr is negative in the open in-
terval (0, ). Then the eigenvalue A=0 is the biggest

A=0,
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and the structure is stable against the first harmonic.

Proceed to the stability against cylindrically symmetric
perturbations v=0. We are interested in the variation of
the sign of the biggest eigenvalue A, produced by the vari-
ation of U. In other words, we shall study the change of
stability along the (continuous) family of stationary states
corresponding to the given function g (v, U)

Generally speaking, the variation of U along the
above-mentioned family is not monotonic, so the function
A(U) must not be single valued. To study this function, it
is convenient to introduce another parameter ¥ which
varies monotonically, and to analyze the functions U(y)
and A(y). The choice of this parameter depends on the
function g(4,U); a natural candidate is the value of the
maximum surface temperature ®(0).

Suppose that at a certain point y,, the biggest eigen-
value vanishes: A(y,,)=0. We differentiate (7) with

respect to y and set y =y,
aB(r) | o
oy f 0

XW(&,r;0,0)6dE

a0(&)

ay (@ (), U,

3¢

f 99 L (0,(6),U,)W(&r;0,0¢d¢

(33)

where the index m denotes quantities at y =y,

Equation (33) may be considered as a linear inhomo-
geneous equation governing the function (8® /3y ),,. The
corresponding homogeneous equation coincides with Eq.
(28) and is satisfied by the (nontrivial) function w,,, so for
Eq. (33) to be solvable its right-hand side should satisfy a
certain orthogonality condition. To obtain this condi-
tion, we multiply (33) by rw,,(r)dq /3(®,,(r),U,,) and
J

integrate in r. The left-hand side vanishes and the result
is

4au
dy

[ ont6)5 q(@ (£),U,)EAE=0. (34)

Further consideration is restricted with functions g
with positive derivative dq /0U (the heat flux density
grows when U is increased at a fixed temperature). The
eigenfunction w,,(£) (corresponding to the biggest eigen-
value) does not change sign. Hence, the integral in (34) is
not zero, so (dU/dy),,=0. Thus, the neutral stability
may occur only for states corresponding to extreme
points of the function U(y) and one may set

00(r)

35
ay (35)

o, (r)=

m

Consider now stability in the vicinity of the point

Y=%m- Wesetin (29) v=0 and rewrite it as
W(E,r;A,0)=W(§,r;0,0)
e E—(E24sen) )72
g )
b (& +sgnld)
XJIo(EVTAIET o(rVIAIS)E

(36)

where b =0 and sgnA=1 for A>0, b =1 and sgnA=—1
for A <0. If follows that the asymptotic expansion of
W(E,r;A,0) for small |A| is

W(E,r;A,0)=W(&,r;0,0)—sgn( AWV A+ - -+ . 37

Differentiating (28) with respect to y, setting ¥y =vy,,,
and making use of (37), one finds

do(r) | _ r= | dw(£) dq
37 J, 3y a¢(® n(E), U, YW(E,r;0,0)E dE
=["lo Sop2L o0 1.(@,,(€),U,, )W(&r;0,0dE— -éd?(sgn(k)\/m) S on (§)a¢‘® (£, U, EdE .
(38)
The condition of solvability of this linear inhomogeneous equation reads
2
L e 0 [e) 3aq .
dy(sgn(?»)\/IM) lf (§) (® (), U, )§d§] fo [0,(8)] 81112(9 (£),U,)edE . (39)

It follows that the function sgn(A)dV[A]/dy is con-
tinuous in the point y=v,,. As dV'|A|/dy changes its
sign in this point (it is negative for ¥ <y,, and positive
for y >¥,,), A also changes its sign. For example, if the
right-hand side of Eq. (39) is negative, A is as depicted in
Fig. 5 and states ¥ > y,, are stable while states y <y, are
unstable.

To evaluate the right-hand side of Eq. (39), we twice

I

differentiate Eq. (7) with respect to y, set y =v,,, multi-
ply by rw,,(r)dq /3y¥(®,,(r),U,, ), and integrate in r. It
follows that the right-hand side of (39) equals to

® g
i [ on®55(0,6,0,)6d8 . 40)

As has already been mentioned, the function w,,(§)
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FIG. 5. Increment of the zeroth harmonic and the voltage
drop (schematic).

does not change sign. According to (35), its sign is deter-
mined by the choice of the parameter y. We assume for
definiteness that w,, (&) is positive. Then the right-hand
side of (39) is negative in the case [d*U/dy?],, >0
[¥ =7, is the point of minimum of the function U(y);
see Fig. 5], and positive in the case [d?U /dy?],, <O (the
maximum point). It follows that in both cases states with
positive values of dU /dy are stable and states with nega-
tive values are unstable.

According to the above, information on stability
against the cylindrically symmetric perturbations (uni-
form expansion or shrinking) may be obtained from
analysis of properties of the family of the stationary
states corresponding to the given function g(v,U). For
example, if the dependence U(y) is nonmonotonic and
the function 3® /3y evaluated for any extreme point of
U(y) is positive in the open interval (0, oo ), the states on
sections of growth of U(y) are stable while states on sec-
tions of decrease are unstable. As another example, we
mention the situation when the function 8® /9y for an
extreme point of U(y) vanishes at finite nonzero r. In
such a situation the eigenvalue A=0 is not the biggest
and all the states in the vicinity of the extreme point are
unstable. Also, we mention the case when the depen-
dence U(y) is monotonic while d® /9y evaluated for any
stationary state is positive (i.e., the temperature at any
fixed point of the surface increases monotonically for the
whole family of steady states). It is natural to expect that
in such a case all the states are stable if the dependence
U(y) is growing, and are unstable if U(y ) is decreasing.

If the role of the parameter ¥ may be attributed to the
integral electric current to the spot and the increase of
the integral current is accompanied by an increase of the
surface temperature, the change of stability occurs in the
extreme points of the current-voltage characteristic of the
spot: The growing section is stable and the falling section
is unstable. It should be emphasized that while previous-
ly the relationship between the stability of current sys-
tems under constant voltage and the sign of their
differential resistance was considered for spatially homo-
geneous or one-dimensional steady states (e.g., [15,16]),
present analysis refers to the two-dimensional states.

V. DISCUSSION OF RESULTS
AND APPLICATION TO THE CATHODE SPOTS
OF VACUUM ARCS

There are some features in common between the heat
structures studied in the present paper and the cylindrical
arc column in a thermal plasma. In both cases there is a
curent structure (current spot or current channel, respec-
tively; discussion of the latter from the point of view of
the asymptotic theory of the arc column is given in [17])
positioned inside the heat structure; the boundary of the
current structure may or may not be distinct; the current
structure heats the adjacent current-free region by means
of heat conduction. However, there is also a very sub-
stantial difference: An external length scale which is
present in the problem of the arc column (the radius of
the discharge vessel) is absent in the theory considered in
the present paper. Note that due to just this difference
the temperature in the center of the spot for the Ar-
rhenius case (12) is of the order of the activation tempera-
ture, while the temperature at the axis of the arc column
depends on the radius of the vessel and is usually much
smaller than the activation temperature (the ionization
potential), this inequality allowing one to obtain an ap-
proximate analytic solution [17].

For the step function (10), the radius of the current
spot is determined by the condition that the temperature
value at the spot edge be equal to the switching tempera-
ture v,. Again, this condition is similar to that determin-
ing the radius of the current channel of the cylindrical
arc in a thermal plasma with the stepwise dependence of
the conductivity on the temperature. For the model (13),
the situation is more complicated and the spot radius is
determined from an analysis of the transition region
separating the spot and the surrounding current-free
area. It should be emphasized once again that in all the
cases, both in the theory of the present paper and in the
theory of the cylindrical arc column, the radius of the
current spot or of the current channel is uniquely deter-
mined by the equations; there is no need of the principle
of minimum voltage. Note that in the theory of the nor-
mal current density effect in the near-cathode region of
the glow discharge, which is another traditional area of
application of this principle, there is also no need of this
principle; in fact, the normal voltage does not coincide
with the minimum voltage [18,19].

In all the cases the longitudinal length scale of the spot
is inversely proportional to the characteristic heat flux
density g, in agreement with the estimate given in the
Introduction from dimensionality considerations. The
reason is that the temperature gradients are inversely
proportional to the spot dimension. The integral heat
flux is proportional to the spot area times g, and there-
fore is inversely proportional to g, .

To apply the above theory to analysis of the cathode
spots of vacuum arcs, the heat flux from the surface into
the cathode bulk should be specified. In the present pa-
per for this purpose the simple model is employed, which
is in the spirit of the conventional macroscopic approach
[1-3] and close to the models used for similar purposes
in [20,21].
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The function q is written as
q=ji(U+U;—@))—j.p1 T @(j;—eC,) , (41)

where j; is the density of the ion current from the plasma
to the cathode surface, j, is the electron emission current
density, U; is the ionization potential, ¢, is the effective
work function, ¢, is the vaporization energy per atom di-
vided by the electron charge e, C, is the flux of the eva-
porated atoms. j, is estimated by means of the
Richardson-Schottky formula (the cathode surface is hot
enough in the considered conditions). C, is evaluated in
terms of the vapor pressure. To obtain an estimate for
the ion current from the plasma, it is supposed that the
backflow coefficient is unity, i.e., all the atoms evaporated
from the surface get ionized and go back to the cathode,
then j;=eC,. The electric-field stren,:h at the cathode
surface, which is involved in the Richardson-Schottky
formula, is evaluated via the Poisson equation.

The heat flux density described by this model for the
copper cathode is shown in Fig. 6. If T is less than some
critical value which lies in the range 4000—4500 K and is
weakly dependent on U (it slightly decreases as U in-
creases), the first term on the right-hand side of (41),
describing the flux of energy delivered by the ions, dom-
inates and q is close to the Arrhenius function, i.e., ap-
proximately proportional to exp( —const/7T'). For T near
the critical value the second term on the right-hand side
of (41), describing the electron emission cooling, becomes
important and the dependence of ¢ on T reaches the max-
imum and then becomes falling. Note that the depen-
dence of g on ¥ is of the same character.

If the temperature in the center of the spot were less
than the above-mentioned critical value, Eq. (12) would
be applicable in the whole temperature range of interest.
It follows from Sec. III that in such a case the tempera-
ture in the center would be of the order of the activation
temperature. However, the latter for the present condi-
tions is around 3.5 X 10* K and far above the critical tem-
perature. Hence, this situation cannot be realized and
the temperature in the center should be close to the criti-

q E
(W/cm®)]
1074
10°
105;
] U=10 V 600
10* 4 300
E 100
103 T T T T T T T 130
0.1 02 03 04 05
T (1073 K™)

FIG. 6. Heat flux density in the cathode spot of a vacuum arc
vs the surface temperature.

cal temperature.

To illustrate appearance of the function g in the vicini-
ty of the critical temperature, the data shown in Fig. 6
are transformed to the independent variable 1, normal-
ized by the values ¥, and g, which correspond to the
point of maximum of the dependence of g on ¥ (or on T),
and plotted on the linear scale in Fig. 7. One can see that
q, is comparable to unity only in the narrow range of the
values of B and is in the first approximation independent
of U. Hence, the function ¢ may be considered as being
of the type (13) with € and the form of the function g, in-
dependent of U.

The asymptotic analysis given in Sec. III for the func-
tion (13) should be applicable. Furthermore, as the width
of the graph in Fig. 7 at the half of the maximum is close
to that for the function (14) with €=0.05, it is expected
that the results of the numerical calculations for the
latter case are representative also for the function con-
sidered here. Then distributions of the temperature and
of the heat flux density over the cathode surface are illus-
trated by the lines 2 and 4 in Fig. 4. In particular, the
temperature in the spot is a little higher than the temper-
ature T, corresponding to the maximum of the depen-
dence of g on T. The radius r, of the spot may be es-
timated as wp,V¥,/2q,, where the value of p, again is
taken from the numerical solution for the function (14)
with €=0.05 and equals to 1.76. The integral heat flux Q
removed by heat conduction is determined by Eq. (18).
To calculate the integral current to the spot, we note that
the current density j =j; +j, may be written for the con-
sidered model as

jEm——
1

(42)

Integrating over the spot surface and supposing for
simplicity that the ion current density in the spot is con-
stant and equal to the value j .« corresponding to the

maximum of the dependence of g on T, one finds for the
integral current

1.00
Qu
0.75 A

0.50 A

0.25 A

0.00 y ;
0.0 0.5

FIG. 7. Normalized heat flux density in the cathode spot of a
vacuum arc. U=10V (solid line), U =600 V (dashed line).
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TABLE I. Evaluated parameters of the cathode spots of vacuum arcs.

Y T, qx Vs T I () Qo
(V) (K) MW/cm?) (kW/cm) (um) (A) MA/cm?) (W) ji/j. Q;/Q
10 4340 6 8.05 37 126 3 119 0.59 0.28
15 4320 8.1 8.02 27 87 3.7 88 0.43 0.24
20 4310 10 8.01 22 68 4.5 70 0.33 0.23
30 4285 14 7.97 16 47 6 50 0.23 0.21
60 4245 25 7.92 8.8 26 11 28 0.12 0.21
100 4200 38 7.86 5.7 17 16 18 0.07 0.20
300 4090 91 7.71 24 7.5 43 7.2 0.02 0.24
600 4000 151 7.58 1.4 4.7 78 4.2 0.01 0.27
,. U+U;  4,r, Forschungsgemeinschaft and supported in part by the
I=mrij» @1 - P 43) Alexander von Humboldt-Stiftung. The author is grate-

The results of evaluation for several values of U are
given in Table I. Besides the above mentioned, the fol-
lowing parameters are presented: the averaged current
density in the spot {j)=I/7r2; the ratio of the ion
current to the electron emission current, evaluated for
given U and T=T,; the ratio Q;/Q, where
Q,=(j )Zr3 /o characterizes the joule heat production
in the cathode bulk [20] (o is the conductivity of the
cathode material evaluated at the temperature in the
spot). One can see that the role of the joule heat produc-
tion is not decisive.

Detailed comparison of the results with some or other
specific experimental data is hardly advisable because
values of such parameters as the current density reported
by experimentalists differ from work to work by orders of
magnitude (e.g., [4,5,22,23] and references therein); on
the other hand, the above-used simple model for the func-
tion q is rather crude. However, we note that the results
for the experimentally observed values of U on the level
15-20 V are inside the usual range of characteristics of
macrospots.

The current-voltage characteristic of the spot is falling.
The increase of the voltage drop is accompanied by the
decrease of the integral current. The temperature in the
spot and the radius of the spot also decrease. If the
analysis of Sec. IV were applicable, one could expect in
such a situation that the structure is unstable. However,
dq /9U for some T is negative, which is clearly seen from
Fig. 6, and this analysis cannot be applied directly. Thus,
the question of stability of the spots requires further in-
vestigation.
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APPENDIX

After the substitution x =§/r Eq. (7) may be rewritten
as

_ ® dB
O(r)=r fo q(®(rx),U)g;dx N (A1)
where
B=B(x) —Jo > ERTD dx . (A2)

We differentiate (A1) with respect to r, integrate by
parts, and rewrite the result as

d@(r) - _iaq(@)(g ), U) xZ—B_B de .
(A3)
It may be shown that
xi 2 _x 4x
dx |7 x+1 " | (x+1)
d x
P pr—m(n) (A4)

where n=(x2+1)/|x2—1|. (To prove this, it is sufficient
to express x in terms of 1, K and P!, ,, in terms of
P_,,,, and to use the differential equation governing the
associated Legendre functions.) Integrating (A4) from O
to x, one can see that the quantity in the curly brackets in
(A3) coincides with W (&,7;0,1). Hence, d® /dr is the
eigenfunction of Eq. (28), corresponding to A=0, v=1.
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